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INTRODUCTION

ABSTRACT

Background: We aimed to develop a robust prognostic model for assessing the risk of
complications associated with radiotherapy in prostate cancer patients using
radiomics and dosiomics feature and machine learning. Materials and Methods: A
cohort of 60 patients undergoing pelvic radiation therapy was analyzed. The patients’
radiomics and dosiomics features were extracted from segmented bladder and rectum
regions in CT images, as well as 3D dose distribution data, respectively. Classifier
algorithms, such as eXtreme Gradient Boosting (XGBoost), Decision Tree (DT), Support
Vector Machines (SVM), K-Nearest Neighbor (KNN), Logistic Regression (LR), Random
Forest (RF), and Multilayer Perceptron (MLP) were used for prediction modeling. A 5-
fold cross-validation method was used to evaluate the predictive classification of
patients with and without proctitis and cystitis. The area under the receiver operating
characteristic curve (AUC) was used for comparing models’ performance, as well
assessing their specificity and accuracy metrics. Results: Various combinations of
feature selection and classifier algorithms evaluated on both training and test datasets
revealed that for bladder toxicity, the Relief+KNN dosiomics model, Boruta+SVM
radiomics model, and the combined radiomics and dosiomics model with
ANOVA+XGBoost show the highest AUCs of 0.76, 0.68, and 0.67, respectively.
Regarding the rectal toxicity, the best-performing models were Boruta+KNN for
dosiomics (AUC 0.83), ANOVA+RF for radiomics (AUC 0.72), and ANOVA+XGBoost for
the combined radiomics and dosiomics (AUC 0.71). Conclusion: Our study
demonstrated the effectiveness of diverse algorithms leveraging quantitative features
extracted from CT imaging and 3D dose distribution data in predicting post-
radiotherapy complications in prostate cancer patients.

machine learning techniques, such as logistic
regression and k-nearest neighbors, with radiomics

Prostate cancer is a global health concern
affecting men, and radiotherapy is a pivotal
component of its treatment (1 2. However,
radiotherapy can lead to complications that
significantly impact a patient's well-being and
treatment outcomes. These complications encompass
various aspects, including damage to the bladder,
prostatic urethra, and rectum, necessitating precise
data and management for effective treatment
planning and enhanced patient care.

In recent years, the burgeoning fields of radiomics
and dosiomics have garnered substantial attention
due to their ability to extract quantitative features
from medical imaging data and dose distribution
information, respectively (9. These features offer
valuable insights into tumor characteristics and the
radiation dose delivered to the tumor and
surrounding tissues (> 6). The integration of advanced

and dosiomics, holds great promise in predicting
treatment outcomes and identifying patients at
higher risk of complications (7.8),

Numerous studies have attempted to develop
models for these complications based on dosimetric
and clinical parameters (©-11), but these models often
face limitations, including variations in patient radio
sensitivity and uncertainties in dosimetric and
planning parameters.

From both clinical and radiobiological
perspectives, it is evident that patients’ responses to
radiotherapy are subject to individualization.
Incorporating a patient's inherent radio sensitivity
into the radiation treatment process, from patient
selection to planning, may positively impact
treatment outcomes (12). Ongoing research in the field
of radiogenomics aims to tailor treatments based on a
patient's genomic characteristics (12.13),
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Through these approaches, our objective was to
set up robust predictive models that can facilitate
personalized treatment planning and relieve the risks
related to complications. The findings of our study
hold significant potential for enhancing treatment
planning and personalized care for prostate cancer
patients undergoing radiotherapy. By precisely
recognizing patients at a higher risk of complications,
clinicians can actualize custom-fitted methodologies
to moderate these risks, driving to made strides in
treatment outcomes and improving patient quality of
life (14,

This study innovates in predicting prostate cancer
radiotherapy complications by integrating radiomics,
dosiomics, and machine learning. Unlike traditional
methods relying solely on dose-volume histograms,
this approach leverages richer data and addresses
limitations by capturing spatial information. It
further emphasizes the strengths, limitations, and
future directions for improved clinical utility in
prostate cancer radiotherapy, ultimately aiming to
optimize treatment and improve patient outcomes.

MATERIALS AND METHODS

Study design and patient cohort

This study was conducted using analysis of
computed tomography (CT) images and treatment
planning data from 60 patients who received external
beam radiotherapy for prostate cancer. Patient data
were anonymized, for the study, ensuring that all
analyses were performed on de-identified datasets.

Data acquisition

Planned CT images were obtained from a 16-slice
SIEMENS scanner (Somatom Scope). Using special
parameters, including a tube voltage of 120 kV, an
exposure range of 225 mA, and a slice thickness of 3
mm, to optimize treatment planning. The MONACO
(version 5.11) treatment planning system was used
for all patients, ensuring the consistency of treatment
plans. Intensity Modulated Radiation Therapy (IMRT)
was chosen as the treatment modality, with
standardized beam arrangements across all patients.
This uniform approach allows for accurate
comparisons and analysis of extracted radiomics and
dosiomics features derived from the treatment plans.

Toxicity assessment

Radiation-induced proctitis and cystitis were
assessed based on patient records and documented
per the Common Terminology Criteria for Adverse
Events (CTCAE) version 5. Specifically,
radiation-induced complications of grade = 2 cystitis
and proctitis were designated as primary toxicities
for the bladder and rectum, respectively. Patients
were classified as experiencing toxicity (Class 1) or
not (Class 0).

Segmentation

The Region of Interest (ROI) was meticulously
segmented under the guidance of an experienced
oncologist. This involved precise delineation of the
anatomical area or tumor region of interest on the
medical images used in our study. The oncologist,
possessing specialized proficiency in prostate cancer
imaging, drew upon their clinical expertise and skill
to intricately outline the ROI, following established
guidelines and protocols (15).

Radiomics and dosiomics feature extracting

We employed the Pyradiomics library for feature
extraction in this study, which is specifically designed
to extract a wide range of features from segmented
CT and 3D dose distribution (DD) data (). This
comprehensive extraction encompassed various
feature sets, including shapes, first-order, second-
order, and higher-order features.

To ensure consistency in feature extraction,
preprocessing steps were executed. Before the
extraction, it was necessary to resample the CT
images to standardize voxel sizes, allowing for
meaningful comparisons. The 3D dose distribution
data were characterized by an isotropic voxels of
1x1x1 mm?, which used to resample the CT images
with a voxel size of 1x1xlmm?® using B-spline
interpolation. This standardization ensured that the
extracted features were independent of the original
voxel dimensions, empowering a more reliable
analysis and comparison of the radiomics and
dosiomics features over the patient cohort (17). By
minimizing the impact of image noise and variability,
these discretization techniques aim to improve the
accuracy and reliability of extracted features (18).

Feature selection

Following feature extraction, three distinct
datasets were generated: CT radiomics features, DD
dosiomics features, and a combined dataset
containing both CT and dose features. To facilitate
model development and assessment, each dataset
was partitioned into training (70%) and testing
(30%) subsets. Feature values were standardized
using z-scores on the training dataset and then
applied to the test data.

To address the challenge of overfitting, it is
essential to remove irrelevant and redundant
features that do not contribute to the predictive
accuracy of a model. This approach not only leads to
faster and more cost-effective models but also
enhances model performance. To achieve this, we
employed various feature selection methods,
including Recursive Feature Elimination (RFE),
Analysis of Variance (ANOVA), Maximum Relevance
Minimum Redundancy (MRMR), Boruta, and Relief.
These feature selection techniques refined the
feature sets, improving the models' performance by
retaining relevant and non-redundant features (19-21),
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Classification

A diverse range of machine learning and
classifiers (eXtreme Gradient Boosting (XGBoost),
Decision Tree (DT), Support Vector Machines (SVM),
K-Nearest Neighbor (KNN), Logistic Regression (LR),
Random Forest (RF), and Multilayer Perceptron
(MLP)) were employed to explore different
approaches and identify the most effective ones for
our specific problem. This allows us to :evaluate
multiple classifiers, we can assess their strengths and
weaknesses, and choose the one best suited to our
dataset prediction task and exploring diverse
algorithms helps us identify broader trends and
reduces the risk of relying solely on an algorithm
potentially specific to the given data.

Each classifier underwent hyperparameter tuning
using the training dataset. This process optimizes the
model's internal configuration to achieve the best
possible performance (22),

Model evaluation

We employed bootstrapping and tested models
across 1000 bootstraps. This technique involves
drawing multiple random samples with replacements
from the original data and generating various
training and testing sets. By evaluating performance
across these resampled datasets, we could account
for variability and gain a more robust understanding
of the model's generalizability.

We used several metrics to assess model
performance, including:
Area under the curve (AUC): The Area Under the
Curve of a Receiver Operating Characteristic (ROC)
curve is essential for assessing binary -classifier
model effectiveness. The ROC curve visually
demonstrates the model's ability to differentiate
between two classes at varying thresholds .The ROC
curve was constructed by plotting the true positive
rate (TPR) against the false positive rate (FPR) at
each threshold, providing insight into the model’s
performance across decision boundaries. TPR and
FPR calculations across all thresholds facilitate a
thorough evaluation of the model .The AUC measures
the model's overall discriminative capacity. An AUC
of 0.5 indicates no discrimination, while an AUC of 1.0
represents perfect classification. Consequently, a
higher AUC signifies better classifier performance,
making it an essential metric for model evaluation
and comparison.
Specificity (SPE): Specificity, often abbreviated as
SPE, is a crucial metric for evaluating the
performance of a binary classifier. It measures the
ability of the model to correctly identify actual
negative cases. In other words, specificity indicates
the proportion of patients who do not experience an
event (e.g.,, radiation-induced complications) and are
accurately classified as not having the event .A high
specificity means that the model minimizes false
positives,  ensuring that patients  without

complications are correctly identified. This is
important in clinical settings, as high specificity helps
prevent unnecessary treatments or interventions for
patients who are not at risk.

Accuracy (ACC): Accuracy is a key metric for
assessing binary classifier performance. It quantifies
the ratio of correctly identified cases to the total
cases. Essentially, accuracy reflects the model’s
prediction reliability for both the target event and its
absence. Elevated accuracy indicates model
dependability, critical in clinical contexts where
precise patient classification influences management
decisions.

Sensitivity (SEN): Sensitivity, or the true positive
rate, quantifies a binary classifier's accuracy in
identifying positive instances. It measures the ratio of
correctly classified positive cases to the total actual
positive cases .A high sensitivity is vital in clinical
settings to ensure accurate detection of patients
requiring intervention, thus minimizing false
negatives. In conclusion, sensitivity serves as a criti-
cal metric for assessing the diagnostic performance of
models in identifying at-risk individuals.

Statistical validation

We employed k-fold cross-validation (k=5) to
further validate the performance of our models. This
technique divides the data into k folds, trains the
model on k-1 folds, and tests it on the remaining fold.
This process is repeated k times, and the average
performance across all folds provides a more robust
estimate of model generalizability compared to a
single train-test split. An array of performance
metrics and evaluation measures were calculated,
and tailored to the specific problem and the type of
model being employed. These measures included
common results such as the AUC, SPE, ACC, and SEN.
These metrics provided a reliable estimate of the
model's ability to generalize to unseen data and
significantly contributed to enhancing the validity of
the research (23.24),

RESULTS

Among the 60 patients with prostate cancer, 15
(approximately 25%) developed proctitis of grade 2
or higher, and 21 patients (around 35%) experienced
cystitis of grade 2 or higher. Figures 1 and 2 present
the performance evaluation of various models that
built on test data set in predicting rectal and bladder
toxicities. We evaluated three different models, each
using unique feature selection and classification
methods, for predicting rectal toxicity in prostate
cancer radiotherapy.

Dosiomics model: This model combined Boruta
feature selection with the KNN classifier, ACC of 0.76,
SPE of 0.77, and AUC of 0.83. It demonstrated
balanced performance in both accuracy and
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specificity, making it potentially valuable for
identifying rectal toxicity cases.

Radiomics model: This model, utilizing ANOVA
feature selection and RF classification, achieved an
exceptional ACC of 0.85 and a high SPE of 0.92,
though its AUC was 0.72. This highlights its
robustness in predicting rectal toxicity.

Combined radiomic and dosiomic features
model: This model, incorporating ANOVA and
XGBoost, yielded promising results with an ACC of
0.77, SPE of 0.93, and AUC of 0.71. While the AUC
may suggest room for improvement, the model
exhibited high specificity alongside substantial
predictive power.
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Figure 1. Performance comparison of various feature
selection methods (ANOVA, Boruta, MRMR, RFE) and machine
learning algorithms (KNN, LR, MLP, RF, XGB) on predicting
rectal toxicity using CT, Dose, and CT-Dose datasets. The
performance metrics - (a) SPE, (b) AUC, (c) ACC, and SEN (d)-
for each combination of feature selection and classification
algorithm on the test dataset.

Three models were evaluated for their ability to
predict bladder toxicity:
Dosiomics model: This model, utilizing Relief
feature selection and KNN classification, achieved an
ACC of 0.66, SPE of 0.64, and AUC of 0.76. While
demonstrating reasonable predictive power (AUC),
its overall performance suggests room for
improvement.
Radiomics model: This model, incorporating Boruta
feature selection and SVM classification, achieved an
ACC of 0.69, SPE of 0.67, and AUC of 0.68. It displayed
potential, particularly in accuracy and specificity,
indicating its capability in bladder toxicity prediction,
but further refinement might be needed.
Combined radiomic and dosiomic features
model: This model, utilizing Relief feature selection
and RF classification, achieved an ACC of 0.61, a high
SPE of 0.75, and an AUC of 0.68. This model excelled
in specificity, highlighting its ability to accurately

identify bladder toxicity cases, but its overall
accuracy may require further optimization.

This study contributes to understanding
radiomics and dosiomics for predicting toxicities in
prostate cancer radiotherapy, paving the way for
personalized treatment strategies. Further validation
and refinement are crucial for clinical
implementation, potentially revolutionizing
management of these toxicities and improving patient
care.
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Figure 2. Performance comparison of various feature selection
methods (ANOVA, Boruta, MRMR, RFE) and machine learning
algorithms (KNN, LR, MLP, RF, XGB) on predicting bladder
toxicity using CT, Dose, and CT-Dose datasets. The
performance metrics - (a) SPE, (b) AUC, (c) ACC, and SEN (d) -
for each combination of feature selection and classification

algorithm on the test dataset.

DISCUSSION

Predicting radiation-induced complications in
prostate cancer radiotherapy remains challenging
due to limitations in current dosimetric parameters,
such as inadequate consideration of individual
anatomical variations and tissue sensitivities. In our
study, we explored the potential of CT radiomics and
dosiomics to enhance prediction accuracy for acute
bladder and rectal toxicities associated with
radiotherapy.

Our findings highlight that specific radiomic
features extracted from pre-treatment CT images,
combined with 3D dose distribution data, yielded
promising results in predicting these toxicities. This
suggests that integrating radiomics and dosiomics
alongside conventional dosimetry could improve the
precision of complication prediction. Notably, we
achieved an AUC of 0.75 and 0.83 for urinary and
gastrointestinal injuries, respectively, underscoring
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the predictive potential of CT and dose-derived
features.

Several studies in radiomics and dosiomics have
also demonstrated promising results in predicting
complications induced by radiotherapy. For instance,
Van Dijk et al. 25 developed predictive models for
late xerostomia and sticky saliva post-radiotherapy
using CT image features, showing superior
performance over clinical models. Similarly, Kraus et
al. 26) utilized dosiomics and radiomics features to
predict pneumonitis following thoracic SBRT, further
illustrating the utility of these approaches in different
clinical contexts. Also, Qingying Yang et al. 27) created
a strong radiomics model utilizing non-contrast CT
scans for predicting pulmonary hypertension (PH).
Their study compared this model’s performance to
prediction models based on clinical and radiological
factors using ten different machine learning
algorithms. The findings revealed that the SVM model
had the highest prediction accuracy, with an AUC of
0.87 and an accuracy of 0.83. Moreover, the
combined predictive model, which included
radiomics features alongside clinical and radiological
parameters, showed the best performance in
forecasting pH.

In this study, SVM was utilized to develop models,
as it is considered appropriate for small sample sizes
(28), Validation of the models was done through
nested cross-validation. A recent study by Bourbonne
et al. @29 indicated that relying on a single random
split of data for training and testing with small
sample sizes could yield unreliable results. They
suggested using nested cross-validation in the
absence of external validation. The use of nested
cross-validation for small sample sizes is
recommended (39 and has been implemented in
various studies (31

In recent years, advancements in radiotherapy
outcome modeling have aimed to develop models
that precisely predict radiotherapy endpoints while
avoiding issues of overfitting and under fitting. This
has been accomplished by assessing a range of
contributing parameters. Pre-treatment factors,
including radiomic features derived from patient
imaging, play a crucial role in helping clinicians
identify patients who may benefit from dose
escalation or reduction 32.33), Our study adds to this
field by utilizing outcome modeling to predict toxicity
using high-quality CT images, offering a simple,
non-invasive, and cost-effective approach.

Moving forward, our ongoing research focuses on
developing robust models to predict toxicity using
high-quality CT images and 3D dose distribution
through outcome modeling 32). Future efforts should
include validating our findings with larger and more
diverse patient populations to strengthen the

generalizability and clinical utility of our models (25
34),

CONCLUSION

This study demonstrates the promising advances
in using radiomics and dosiomics for toxicity
prediction in prostate cancer radiotherapy, further
investigation with comprehensive validation studies
and broader demographic inclusion is essential.
These efforts will facilitate informed treatment
decisions and ultimately improve patient outcomes.

ACKNOWLEDGEMENT
Not applicable.

Conflict of interest: The authors approved that they
have no conflict of interest.

Financial support: None.

Ethical consideration: This article does not involve
any research involving human participants or animal
subjects conducted by the authors. Therefore, no
discussion of ethical approval or adherence to the
Declaration of Helsinki and its amendments, or any
other relevant ethical standards, is applicable.
Author contribution: The study was a collaborative
effort with all authors contributing equally. This
includes the design of the research, gathering and
analyzing the data, writing the initial draft, and
revising the manuscript. All authors have reviewed
and approved the final version of the manuscript.

REFERENCES

1. Liang B, Yan H, Tian Y, et al. (2019) Dosiomics: extracting 3D spatial
features from dose distribution to predict incidence of radiation
pneumonitis. Frontiers in Oncology, 9: 269.

2. Murakami Y, Soyano T, Kozuka T, et al. (2022) Dose-based radio-
mic analysis (dosiomics) for intensity modulated radiation therapy
in patients with prostate cancer: correlation between planned
dose distribution and biochemical failure. Int J Radiat Oncol Biol
Phys, 112(1): 247-59.

3. Rossi L, Bijman R, Schillemans W, et al. (2018) Texture analysis of
3D dose distributions for predictive modelling of toxicity rates in
radiotherapy. Radiotherapy and Oncology, 129(3): 548-53.

4. Wu A, LiY, Qi M, et al. (2020) Dosiomics improves prediction of
locoregional recurrence for intensity modulated radiotherapy
treated head and neck cancer cases. Oral Oncology, 104: 104625.

5. Huang, Feng A, Lin Y, et al. (2022) Radiation pneumonitis predic-
tion after stereotactic body radiation therapy based on 3D dose
distribution: dosiomics and/or deep learning-based radiomics
features. Radiation Oncology, 17(1): 188.

6. Shevach J, Weiner A, Morgans AK (2019) Quality of life—focused
decision-making for prostate cancer. Current Urology Reports, 20:
1-7.

7. LegerS, Zwanenburg A, Pilz K, et al. (2017) A comparative study of
machine learning methods for time-to-event survival data for
radiomics risk modelling. Scientific Reports, 7(1): 13206.

8. Chan MF, Witztum A, Valdes G (2020) Integration of Al and ma-
chine learning in radiotherapy QA. Frontiers in Artificial Intelli-
gence, 3: 577620.

9. Thor M, Olsson C, Oh JH, et al. (2016) Urinary bladder dose—
response relationships for patient-reported genitourinary morbidi-
ty domains following prostate cancer radiotherapy. Radiotherapy
and Oncology, 119(1): 117-22.

10. Viswanathan AN, Yorke ED, Marks LB, et al. (2010) Radiation dose—
volume effects of the urinary bladder. Int J Radiat Oncol Biol Phys,
76(3): S116-522.

11. Falahatpour Z, Geramifar P, Mahdavi SR, et al. (2022) Potential
advantages of FDG-PET radiomic feature map for target volume


file:///E:/IJRR/23-1/Word/attachments/22.%20Hashemi%20&%20Sadati%20\(5150\)%20Final-edited.docx#_ENREF_25#_ENREF_25
file:///E:/IJRR/23-1/Word/attachments/22.%20Hashemi%20&%20Sadati%20\(5150\)%20Final-edited.docx#_ENREF_26#_ENREF_26
file:///E:/IJRR/23-1/Word/attachments/22.%20Hashemi%20&%20Sadati%20\(5150\)%20Final-edited.docx#_ENREF_27#_ENREF_27
file:///E:/IJRR/23-1/Word/attachments/22.%20Hashemi%20&%20Sadati%20\(5150\)%20Final-edited.docx#_ENREF_28#_ENREF_28
file:///E:/IJRR/23-1/Word/attachments/22.%20Hashemi%20&%20Sadati%20\(5150\)%20Final-edited.docx#_ENREF_29#_ENREF_29
file:///E:/IJRR/23-1/Word/attachments/22.%20Hashemi%20&%20Sadati%20\(5150\)%20Final-edited.docx#_ENREF_30#_ENREF_30
file:///E:/IJRR/23-1/Word/attachments/22.%20Hashemi%20&%20Sadati%20\(5150\)%20Final-edited.docx#_ENREF_31#_ENREF_31
file:///E:/IJRR/23-1/Word/attachments/22.%20Hashemi%20&%20Sadati%20\(5150\)%20Final-edited.docx#_ENREF_32#_ENREF_32
file:///E:/IJRR/23-1/Word/attachments/22.%20Hashemi%20&%20Sadati%20\(5150\)%20Final-edited.docx#_ENREF_33#_ENREF_33
file:///E:/IJRR/23-1/Word/attachments/22.%20Hashemi%20&%20Sadati%20\(5150\)%20Final-edited.docx#_ENREF_32#_ENREF_32
file:///E:/IJRR/23-1/Word/attachments/22.%20Hashemi%20&%20Sadati%20\(5150\)%20Final-edited.docx#_ENREF_25#_ENREF_25
file:///E:/IJRR/23-1/Word/attachments/22.%20Hashemi%20&%20Sadati%20\(5150\)%20Final-edited.docx#_ENREF_34#_ENREF_34
http://dx.doi.org/10.61186/ijrr.23.1.239
https://mail.ijrr.com/article-1-6067-en.html

[ Downloaded from mail.ijrr.com on 2025-10-19 ]

[ DOI: 10.61186/ijrr.23.1.239 ]

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

244 Int. J. Radiat. Res., Vol. 23 No. 1, January 2025

delineation in lung cancer radiotherapy. Journal of Applied Clinical
Medical Physics, 23(9): e13696.

Fahrig A, Koch T, Lenhart M, et al. (2018) Lethal outcome after
pelvic salvage radiotherapy in a patient with prostate cancer due
to increased radiosensitivity. Strahlentherapie und Onkologie, 194
(1): 60-6.

El Naga I, Kerns SL, Coates J, et al. (2017) Radiogenomics and radi-
otherapy response modeling. Physics in Medicine & Biology, 62
(16): R179.

Parker C, Castro E, Fizazi K, et al. (2020) Prostate cancer: ESMO
Clinical Practice Guidelines for diagnosis, treatment and follow-up.
Annals of Oncology, 31(9): 1119-34.

Gibson E, Bauman GS, Romagnoli C, et al. (2016) Toward prostate
cancer contouring guidelines on magnetic resonance imaging:
dominant lesion gross and clinical target volume coverage via
accurate histology fusion. Int J Radiat Oncol Biol Phys, 96(1): 188-
96.

Van Griethuysen JJ, Fedorov A, Parmar C, et al. (2017) Computa-
tional radiomics system to decode the radiographic phenotype.
Cancer Research, 77(21): e104-e7.

Zhang X, Zhang Y, Zhang G, et al. (2022) Deep learning with radi-
omics for disease diagnosis and treatment: challenges and poten-
tial. Frontiers in Oncology, 12: 773840.

Limkin EJ, Sun R, Dercle L, et al. (2017) Promises and challenges for
the implementation of computational medical imaging (radiomics)
in oncology. Annals of Oncology, 28(6): 1191-206.

Bugata P and Drotar P (2020) On some aspects of minimum redun-
dancy maximum relevance feature selection. Science China Infor-
mation Sciences, 63(1): 112103.

Radovic M, Ghalwash M, Filipovic N, Obradovic Z (2017) Minimum
redundancy maximum relevance feature selection approach for
temporal gene expression data. BMC Bioinformatics, 18: 1-14.
Abdulsalam SO, Mohammed AA, Ajao JF, et al. (2020) Performance
evaluation of ANOVA and RFE algorithms for classifying microarray
dataset using SVM. In: Information Systems: 17th European, Medi-
terranean, and Middle Eastern Conference, EMCIS 2020, Dubai,
United Arab Emirates, p. 480-92. Springer.

Way TW, Sahiner B, Hadjiiski LM, Chan HP (2010) Effect of finite
sample size on feature selection and classification: a simulation
study. Medical Physics, 37(2): 907-20.

23.Hsu WC, Liu CC, Chang F, Chen SS (2013) Selecting genes for can-
cer classification using SVM: an adaptive multiple features scheme.
International Journal of Intelligent Systems, 28(12): 1196-213.

24.Wainer J and Cawley G (2021) Nested cross-validation when se-
lecting classifiers is overzealous for most practical applications.
Expert Systems with Applications, 182: 115222.

25.Van Dijk LV, Brouwer CL, Van der Laan HP, et al. (2017) Geometric
image biomarker changes of the parotid gland are associated with
late xerostomia. Int J Radiat Oncol Biol Phys, 99(5): 1101-10.

26.Kraus KM, Oreshko M, Bernhardt D, et al. (2023) Dosiomics and
radiomics to predict pneumonitis after thoracic stereotactic body
radiotherapy and immune checkpoint inhibition. Frontiers in On-
cology, 13: 1124592.

27.Yang Q, Sun J, Guo Y, et al. (2022) Radiomics Features on Comput-
ed Tomography Combined With Clinical-Radiological Factors Pre-
dicting Progressive Hemorrhage of Cerebral Contusion. Frontiers in
Neurology, 13: 839784.

28.Song J, Yin Y, Wang H, et al. (2020) A review of original articles
published in the emerging field of radiomics. European Journal of
Radiology, 127: 108991.

29.Bourbonne V, Da-Ano R, Jaouen V, et al. (2021) Radiomics analysis
of 3D dose distributions to predict toxicity of radiotherapy for lung
cancer. Radiotherapy and Oncology, 155: 144-50.

30.Bradshaw TJ, Boellaard R, Dutta J, et al. (2022) Nuclear medicine
and artificial intelligence: best practices for algorithm develop-
ment. Journal of Nuclear Medicine, 63(4): 500-10.

31.Fan Z, Sun Z, Fang S, et al. (2021) Preoperative Radiomics Analysis
of 1p/19q Status in WHO Grade Il Gliomas. Frontiers in Oncology,
11: 616740.

32.Coates J and El Naga | (2016) Outcome modeling techniques for
prostate cancer radiotherapy: Data, models, and validation. Physi-
ca Medica, 32(3): 512-20.

33. Mostafaei S, Abdollahi H, Kazempour Dehkordi S, et al. (2020) CT
imaging markers to improve radiation toxicity prediction in pros-
tate cancer radiotherapy by stacking regression algorithm. La
Radiologia Medica, 125: 87-97.

34.Saeedi E, Dezhkam A, Beigi J, et al. (2019) Radiomic feature robust-
ness and reproducibility in quantitative bone radiography: a study
on radiologic parameter changes. Journal of Clinical Densitometry,
22(2): 203-13.


http://dx.doi.org/10.61186/ijrr.23.1.239
https://mail.ijrr.com/article-1-6067-en.html
http://www.tcpdf.org

